Searches for Beyond the Standard Model Physics at DØ

James Kraus
Michigan State University
For the DØ Collaboration
DIS, April, 2011

Beyond the Standard Model

Searches at DØ

- The DØ Collaboration has produced many new limits on BSM Theories
 - Search for diphoton events with large missing transverse energy (MET)
 - Search for events with leptonic jets and MET
 - Limits on heavy neutral gauge boson in the ee channel
 - Search for single vector-like quarks
 - Search for resonant WW and WZ production
 - Search for W'→tb resonances with left- and right-handed couplings to fermions
 - Search for new fermions ('quirks')
 - Search for pair production of scalar top quarks in the $e\mu$ final state

Beyond the Standard Model

Searches at DØ

- The DØ Collaboration has produced many new limits on BSM Theories
 - Search for diphoton events with large missing transverse energy (MET)
 - Search for events with leptonic jets and MET
 - Limits on heavy neutral gauge boson in the ee channel
 - Search for single vector-like quarks
 - Search for resonant WW and WZ production
 - Search for $W' \rightarrow tb$ resonances with left- and right-handed couplings to fermions
 - Search for new fermions ('quirks')
 - Search for pair production of scalar top quarks in the $e\mu$ final state

DØ Detector

- pp collisions
 - \circ $\sqrt{s} = 1.96 \text{ TeV}$
 - 1 collision per 396 ns

James Kraus Michigan State University

Di-Photon Search

- In Supersymmetry (SUSY), every particle has superpartner
 - In some Gauge Mediated Symmetry Breaking (GMSB) Models, SUSY particles $\rightarrow \tilde{\chi}^0 \rightarrow \gamma$ +gravitino
 - R-parity conserved
 - pair production
 - gravitino stable with m~1 keV
- For Universal Extra Dimensions (UED) models
 - Compact extra dimension of radius R_c
 - $_{\circ}$ Tower of KK excitations with masses separated by R $_{\rm c}^{-1}$
 - With additional Gravity only ED, decay to Gγ
- Signature for both models: $\gamma\gamma$ + MET

Photon Identification

- γ requirements
 - narrow energy deposition
 - Central Calorimeter only
 - 95% energy in EM calorimeter
 - Anti-track match
 - NN for \(\gamma \) jet separation
 - Hollow cone track isolation
 - $_{\circ}$ E_{τ} > 25 GeV

• Also require $\Delta \phi$ separation between MET and nearest γ , jet

Photon Background Estimates

- $W\gamma\gamma$ and $Z\gamma\gamma$ from MC
- $W\gamma$ and Wj from $e\gamma$ data
 - Estimate $e \rightarrow \gamma$ mis-ID rate from tracking efficiency
- QCD backgrounds
 - γγ events with some calorimeter cuts reversed
 - Also look at Z→ee events
 - MET distributions agree within errors

95% Confidence Limits

- SUSY signal based on GMSB Snowmass Slope SPS 8.
 - $_{\text{o}}$ $\,N_{_{m}}=\,1$, $\,\mu>\,0$, $\,tan\beta\,=\,1\,5$, $\,M_{_{m}}/\Lambda\,=\,2\,$
- UED model considered has 6 extra dimensions and a fundamental Planck scale $M_D = 5$ TeV

PRL 105, 221802 (2010)

arXiv:1008.2133

Hidden-valleys and

Supersymmetry

- Hidden-valley models have hidden sector weakly coupled to SM
 - Force carrier, γ_D , has mass ≤ 2 GeV
- If SUSY exists, lightest SUSY particle (LSP) may decay promptly to hidden sector

- Dark photons replace the photons of previous result
- Expect γ_D to decay to charged fermions
 - Unlike QCD jets, may contain only charged leptons
 - Search for tightly collimated jets of leptons with MET

Leptonic Jets

- ▶ To reconstruct leptonic jets (Fjet), we start with the loose ID criteria for isolated electrons and muons
 - Electronic jets have a track pointing to an isolated cluster of EM energy in the central calorimeter
 - Muonic jets have a track matched to hits in the muon system and calorimeter isolation
 - If an \digamma jet passes e and μ criteria, treat as μ -jet
- Problem Require a second track with opposite charge within $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)} < 0.2$ of seed track
 - If multiple tracks, choose one closest in ΔR to seed track
 - To reduce QCD impose hollow cone track isolation $0.2 < \Delta R < 0.4$ about seed track

Leptonic Jets and

MET Search $\int \mathcal{L} dt = 5.8 \text{ fb}^{-1}$

- We require 2 \digamma jets with seed track $p_T > 10$ GeV separated by
 - $\Delta R > 0.8$ and MET > 30 GeV
 - MET calculated from the calorimeter energy with no μ p_T correction, as this is hard to determine in μ -jets
- Primary background is from QCD jets faking ←jets
 - Estimated using data
 - background uses non-isolated ⊢jets
 - Normalized to signal using events with MET <15 GeV

James Kraus Michigan State Universi

Limits on SUSY Dark Photon

Production

- Data is consistent with predicted SM background
 - Set limits for SUSY GMSB model with SPS8 parameters

Final state	N _{obs}	N _{SM}	Α×ε	\mathcal{B}	95% CL on σ× <i>B</i>	Expected limit
ee	7	10.2±1.7	0.09	\mathcal{B}_{e}^{2}	13 fb	19 fb
еμ	11	17.5±4.2	0.0795	23g B 4	19 fb	30 fb
μμ	3	8.6±4.5	0.03	\mathcal{B}_{μ}^{2}	20 fb	35 fb

Systematics include 20% on signal efficiency, 20– 50% on background normalization, and 6.1% on integrated luminosity

PRL 105, 211802 (2010) arXiv:1008.3356

Dark Photon Mass search

- We also search for a mass resonance in the invariant di-track mass within the ⊢jets
 - No evidence of a resonance is found, so we place an upper limit on the $\gamma_D \sigma vs \gamma_D mass$.

Search for a Heavy Neutral

Gauge Boson decaying to ee

- Several new physics models predict a Z'→ee
 - Electron definition similar to γ , but require either a track match or pattern of hits in CFT/SMT pointing to calorimeter cluster
- ▶ Main SM background $Z/\gamma^* \rightarrow ee$
 - Modeled with PYTHIA + NNLO mass-dependent k-factor
 - Multijet background modeled using data
 - Other SM background (WW,Wγ,etc) modeled using РΥΤΗΙΑ

Limits on Z' PLB 695, 88 (2011)

arXiv:1008.2023

No excess observed $\int \mathcal{L} dt = 5.4 \text{ fb}^{-1}$

 Set limits in the Sequential Standard Model (SSM), E models with varying mixing angles, and the Stueckelberg extension of the Standard Model (StSM)

Model	Lower Mass Limit (GeV)			
	Expected	Observed /		
$Z'_{ m SSM}$	1024	1023 /		
	927	923 /		
$Z'_{\eta} \ Z'_{\chi} \ Z'_{\psi} \ Z'_{N} \ Z'_{sq}$	910	903 /		
Z_{ψ}^{r}	898	891 /		
$Z_N^{'}$	879	874 /		
Z'_{sq}	829	822 /		
$Z_I^{'}$	795	772 $^{\prime}$		
$Z'_{\rm StSM}(\epsilon = 0.06)$	471	443 —		
$Z'_{\rm StSM}(\epsilon = 0.05)$	414	417		
$Z'_{\rm StSM}(\epsilon = 0.04)$	340	289		
$Z'_{\rm StSM}(\epsilon = 0.03)$	227	264		
$Z'_{\rm StSM}(\epsilon = 0.02)$		180		
		Michigan State Universit	37	

Single Vector Quark Search

- Several BSM models predict vector-like quarks
 - \circ Q_R and Q_I behave the same under SU(3)XSU(2)XU(1)
 - In some models, contributions to gauge boson couplings cancel out, allowing electroweak production with SM quark
- We search for a vector quark decaying to Vq
 - \circ V=W,Z; W $\rightarrow \ell \nu$,Z $\rightarrow \ell \ell$
 - Assume U→Zu, D→Wu
 - $_{\text{o}}$ Effect mass limits, not $\sigma_{_{Q}}$

- Signature is di-lepton + jet or lepton + jet +MET
 - $\models e, \mu$

Vector Quark Signal and

Backgrounds

- To enhance signal, require high p_T events
- Generate signal MC with MADGRAPH between 280-700 GeV
- Primary backgrounds are Z+jet and W+jet
 - top, diboson, and multijet also contribute
 - V+jet, top from with ALPGEN
 - Diboson estimate from PYTHIA
 - Multijet estimate from data

Single Vector Quark Limits

$\int \mathcal{L} dt = 5.4 \text{ fb}^{-1}$

- No Significant excess is observed
- For a κ_{qQ} coupling constant of 1at 95% CL
 - with $U \rightarrow Zu$, $M_U > 449 \text{ GeV}$
 - $_{ extsf{o}}$ with DightarrowWu, M $_{_{ extsf{D}}} > 693~\text{GeV}$

PRL 106, 081801 (2011) arXiv:1010.1466

Many Other New Limits

Scalar top quark PLB 696, 321 (2011) arXiv:1009.5950

Quirks PRL 105, 211803 (2010) arXiv:1008.3547

Accepted by PI B

Summary

$$\sigma \times B < 13-20 \text{ fb}$$

▶ New GMSB/UED $di-\gamma$ limits

$$\Lambda > 124 \text{ TeV}$$
 $m_{\tilde{\chi^0}} > 175 \text{ GeV}$
 $R_c^{-1} > 477 \text{ GeV}$

New Z' limit

$$M_{Z'_{SSM}} > 1023 \text{ GeV}$$

New Vector Quark limits

$$M_U > 449 \text{ GeV}$$

 $M_D > 693 \text{ GeV}$

James Kraus Michigan State University